IGFBP-3 mediates TGF-beta1-induced cell growth in human airway smooth muscle cells.
نویسندگان
چکیده
Both insulin-like growth factor binding protein-3 (IGFBP-3) and transforming growth factor-beta (TGF-beta) have been separately shown to have cell-specific growth-inhibiting or growth-potentiating effects. TGF-beta stimulates IGFBP-3 mRNA and peptide expression in several cell types, and TGF-beta-induced growth inhibition and apoptosis have been shown to be mediated through the induction of IGFBP-3. However, a link between the growth stimulatory effects of TGF-beta and IGFBP-3-induction has not been shown. In this study, we investigated the role of IGFBP-3 in mediating TGF-beta1-induced cell growth using human airway smooth muscle (ASM) cells as our model. TGF-beta1 (1 ng/ml) treatment induced a 10- to 20-fold increase in the levels of expression of IGFBP-3 mRNA and protein. Addition of either IGFBP-3 or TGF-beta1 to the growth medium resulted in an approximately twofold increase in cell proliferation. Coincubation of ASM cells with IGFBP-3 antisense (but not sense) oligomers as well as with an IGFBP-3 neutralizing antibody (but not with control IgG) blocked the growth induced by TGF-beta1 (P < 0.001). Several IGFBP-3-associated proteins were observed in ASM cell lysates, which may have a role in the cellular responses to IGFBP-3. These findings demonstrate that IGFBP-3 is capable of mediating the growth stimulatory effect of TGF-beta in ASM cells.
منابع مشابه
Nox4 mediates TGF-beta1-induced retinoblastoma protein phosphorylation, proliferation, and hypertrophy in human airway smooth muscle cells.
Transforming growth factor-beta1 (TGF-beta1) plays a pivotal role in increasing airway smooth muscle mass in severe asthma by inducing proliferation and hypertrophy of human airway smooth muscle. The mechanism(s) for these effects of TGF-beta1 have not been fully elucidated. In this study, we demonstrate that TGF-beta1 is a potent inducer of expression of the nonphagocyte NAD(P)H oxidase cataly...
متن کاملNOX4 Mediates Hypoxia-Induced Proliferation of Human Pulmonary Artery Smooth Muscle Cells: The Role of Autocrine Production of Transforming Growth Factor-β1 and Insulin-Like Growth Factor Binding Protein 3
Persistent hypoxia can cause pulmonary arterial hypertension (PAH) that may be associated with significant remodeling of the pulmonary arteries, including smooth muscle cell proliferation and hypertrophy. We previously demonstrated that the NADPH oxidase homologue NOX4 mediates human pulmonary artery smooth muscle cell (HPASMC) proliferation by transforming growth factorβ1 (TGF-β1). We now show...
متن کاملAngiotensin II induces hypertrophy of human airway smooth muscle cells: expression of transcription factors and transforming growth factor-beta1.
Increased smooth muscle mass due to hyperplasia and hypertrophy of airway smooth muscle (ASM) cells is a common feature in asthma. Angiotensin II (Ang II), a potent vasoconstrictor and mitogen for a wide variety of cells, has recently been implicated in bronchoconstriction in asthmatics. However, a possible mitogenic role as well as underlying molecular mechanisms of this octapeptide in human A...
متن کاملTGF-β1 increases proliferation of airway smooth muscle cells by phosphorylation of map kinases
BACKGROUND Airway remodeling in asthma is the result of increased expression of connective tissue proteins, airway smooth muscle cell (ASMC) hyperplasia and hypertrophy. TGF-beta1 has been found to increase ASMC proliferation. The activation of mitogen-activated protein kinases (MAPKs), p38, ERK, and JNK, is critical to the signal transduction associated with cell proliferation. In the present ...
متن کاملGM-CSF increases airway smooth muscle cell connective tissue expression by inducing TGF-beta receptors.
Fibrosis around the smooth muscle of asthmatic airway walls leads to irreversible airway obstruction. Bronchial epithelial cells release granulocyte/macrophage colony-stimulating factor (GM-CSF) in asthmatics and are in close proximity to airway smooth muscle cells (ASMC). The findings in this study demonstrate that GM-CSF induces confluent, prolonged, serum-deprived cultures of ASMC to increas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 278 3 شماره
صفحات -
تاریخ انتشار 2000